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Effects of impurities in spin Bose-metal phase on a two-leg triangular strip
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We study the effects of nonmagnetic impurities in a spin Bose-metal (SBM) phase discovered in a two-leg
triangular strip spin-1/2 model with ring exchanges (D. N. Sheng et al., arXiv:0902.4210). This phase is a
quasi-one-dimensional (quasi-1D) descendant of a two-dimensional (2D) spin liquid with spinon Fermi sea and
the present study aims at interpolating between the 1D and 2D cases. Different types of defects can be treated
as local-energy perturbations, which we find are always relevant. As a result, a nonmagnetic impurity generi-
cally cuts the system into two decoupled parts. We calculate bond energy and local spin susceptibility near the
defect, both of which can be measured in experiments. The spin Bose metal has dominant correlations at
characteristic incommensurate wave vectors that are revealed near the defect. Thus, the bond energy shows a
static texture oscillating as a function of distance from the defect and decaying as a slow power law. The local
spin susceptibility also oscillates and actually increases as a function of distance from the defect, similar to the
effect found in the 1D chain [S. Eggert and 1. Affleck, Phys. Rev. Lett. 75, 934 (1995)]. We calculate the
corresponding power-law exponents for the textures as a function of one Luttinger parameter of the SBM

theory.
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I. INTRODUCTION

There has been much interest in spin-liquid phases and
much progress has been made in our theoretical understand-
ing of these (see Ref. 1 for a review). However, only recently
several experimental candidates have emerged. Among these,
the  triangular-lattice-based  organic =~ compound  «
—(ET),Cu,(CN); shows strong evidence of a gapless spin
liquid.>>> One proposed theoretical state has a Fermi surface
of fermionic spinons. This appears as a good variational
state® for an appropriate spin model with ring exchanges and
also as an appealing state in a slave particle study’ of the
Hubbard model near the Mott transition, leading to a U(1)
gauge theory description.

The variational study is not sufficient to prove that a given
state is realized in the system and the (two-dimensional) 2D
gauge theory does not give reliable information about the
long-distance behavior. Driven by the need for a controlled
theoretical access to such phases, Ref. 8 considered the
Heisenberg plus ring model on a two-leg triangular strip and
found a ladder descendant of the 2D spin liquid in a wide
regime of parameters; it also developed a Bosonization de-
scription of the quasi-one-dimensional (quasi-1D)state.

The present work is motivated by '“C NMR
experiments®~!? in the organic spin-liquid material that ob-
served strong inhomogeneous line broadening at low tem-
peratures. Theoretical Ref. 13 studied effects of nonmagnetic
impurities in the candidate spin liquid with spinon Fermi
surface and calculated the local spin susceptibility using
mean-field approach. The susceptibility has an oscillating
2ky component decaying with a 1/x power-law envelope. A
more complete gauge theory treatment is expected to modify
this power law!3~!3 but one cannot calculate the exponent
quantitatively.

For comparison, the 1D Heisenberg chain can be loosely
viewed as a 1D version of the spinon Fermi sea state!® and in
this case the staggered component of the local susceptibility
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grows away from an impurity as x"? in the limit of zero

temperature and zero field. This was discovered by Eggert
and Affleck!”!'® and is responsible for strong inhomogeneous
line broadening observed in several 1D spin-1/2 chain
materials.'%?

In this paper we calculate effects of nonmagnetic impuri-
ties in the two-leg ladder descendant of the spin liquid using
analytical approaches developed in Ref. 8 in the hope of
obtaining some interpolation between the 1D chain and 2D
spin liquid. We find strong enhancement of the 2k, compo-
nents of the local susceptibility compared with the mean
field. The susceptibility increases away from an impurity as
~x1278* = x4 where g is one Luttinger parameter describ-
ing the phase® and can take values g<1. This is a slower
increase than in the 1D chain but is still a dramatic effect. We
also calculate bond textures around the defect.

II. NONMAGNETIC IMPURITIES IN THE SPIN BOSE-
METAL ON THE LADDER

The spin system resides on the two-leg triangular ladder
shown in Fig. 1, which we can also view as a zigzag chain.
Throughout we assume that the model is in the described
descendant phase, which we will refer to as “spin Bose
metal” (SBM) following Ref. 8. Examples of nonmagnetic
defects are shown in Fig. 1 and are discussed in detail later.
Generally speaking, even though there are different types of
defects, we find that they eventually (at low energies) cut the
system into finite sections with essentially open boundary
conditions.'7'82! We can then perform analytical calcula-
tions in a semi-infinite system studying physical properties
as a function of the distance from the boundary. In the fol-
lowing, we focus on induced textures in two measurable
quantities—the bond energy and local spin susceptibility.
The physics is that an impurity perturbation has components
on all wave vectors and can directly “nucleate” the dominant
bond-energy correlations. The impurity also allows the uni-
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FIG. 1. (Color online) The top figure represents the original
two-leg triangular ladder model with ring exchanges and the thick
lines represent the defects due to the impurities. The bottom figures
represent the corresponding defects in the equivalent 1D model
(Ref. 8). (1) represents the defect symmetric with respect to a bond
center, while (2), (3), and (4) represent defects symmetric about a
site of the 1D chain. In general, different impurities will lead to
different fixed points. Impurity (1) is likely to lead to a fixed point
with decoupled semi-infinite systems and a nonmagnetic cluster
containing an even number of sites, while impurities (2), (3), and
(4) is likely to lead to a fixed point with decoupled semi-infinite
systems and an effective spin formed by a cluster with an odd
number of sites.

form external magnetic field to couple to the dominant spin
correlations, producing textures in the local susceptibility.

Following the description in Ref. 8, there are three gap-
less modes with the fixed-point Lagrangian density

1
‘CSBM_ 2’7Tg|: ((9 ap—)2+v( X p—)2:|

+

a12277

[—(a 0.0)” + V(3,6 0)2]. (1)

Schematically, one route to this theory® is via a Bosonization
treatment of electrons at half filling on the ladder, where we
start with two bands a=1,2, and assume that the umklapp
gaps out only the overall charge mode 6,, while the other
three modes 6,_, 6,,, and 6,, remain gapless. Note that in
this paper, we simply postulate SBM phase and do not dis-
cuss how to stabilize it. However, our intuition is that with
long-ranged repulsive interaction between electrons, we can
make (relatively stable) C2S2 metallic phase (with four gap-
less modes p,,p_,10,20) go to the SBM phase, which is
C1S2 Mott insulator with the overall charge mode p+ gapped
by appropriate umklapp process. In addition, g;, and g, are
equal to 1 because of SU(2) spin invariance.

Reference 8 describes various observables in the SBM.
For the magnetic-susceptibility calculations, we will need the
spin operator. The S* component under Bosonization is
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(010'+ 020'
\277

Si(x) = 2 SH(x)e'e. )

The most important wave vectors are Q= *2kp;, *2kp,
F(kp;+kpy)= = /2, and 7. Each term can be expressed as
in Ref. 8

nga =— 0™ 10p- sin(\e’Eﬁaa), (3)
S5 =e = imyy e 0o sin(o,- + @,
+iny el sin(e, — ¢,)], (4)

S5 =[asin(26,,) + o' sin(26,_)]sin(26,,). (5)

Throughout, we keep 6,,, general, but it is understood to be
pinned; details about the pinning value as well as the Klein
factors 7,,, can be found in Ref. 8. In the first line, the upper
or lower sign corresponds to a=1 or 2. We also introduce
combinations 6, =(6,,% 6,,)/ V2 and 51m11ar1y for the con-
jugate fields ¢, . In the last line, & and a' are independent
numerical constants.

When discussing nonmagnetic defects and also in the
bond-energy texture calculations, we need nth neighbor
bond-energy operator such as

B(n)(-x) = §x ' §x+n' (6)

The bosonized form can be obtained from Ref. &,

B0~ S By +By B )
a=1,2

where we keep only the most important wave vectors and

By (x) ~ cos(\'2 0,0)
X COS(ZkFax + y(z',’()F St 0o * p_) , (8)
BY) (x) ~ cos(dkpix+ 9 +26,,+26,),  (9)

g)z(x) — 717y COS<EX+ )/57"/)2 O — t90+)

Xsin(@,_+ @) = i1y 7,

><cos<5x+ 7’77/2 O + 00+> sin(g,- = ¢,-).

(10)

We do not show real factors in front of all terms. Here 'y(Q”)
are phases that depend on Q and the bond type

¥y =nQ2, (11)
valid for Q # 7. Note also that since 4kp,=—4kr; mod 2,
there is only one independent term By,
A. Nonmagnetic defects treated as perturbations

When a nonmagnetic defect is introduced at x,, we can
treat it as a local perturbation in the Hamiltonian.!”?! Figure
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1 shows some possible defects; the corresponding perturba-
tions are

SHY ~ S(xo) - S(xo+ 1) ~ BW(xy), (12)

SH® ~S(xg—1)-Slxg+ 1) ~ BP(xo= 1), (13)

SH® ~ S(xo) - [S(xo— 1) + S(xo+ 1)] (14)
~BW(xg—1) + BV(x), (15)
SH™ ~ S(xo) - [S(xg—2) + S(xp +2)] (16)
~B®(xy-2) + B?(xy). (17)

Here B'" and B are given by Eq. (7). We can characterize
the defects by symmetry. In the 1D chain picture, SH" rep-
resents defects symmetric under inversion in a bond center
while SH>** are defects symmetric under inversion in a
site. One can readily check that H?3* give equivalent ex-
pressions up to constant factors and, importantly, contain all
QO modes in general. We see that although the defects can be
characterized as two distinct symmetry types SH" and
SH®?, the perturbations to the Hamiltonian have the same
dynamical field content and differ only by constant phases.
This is unlike the Bethe phase of the 1D Heisenberg chain
where a bond-symmetric perturbation contains a relevant
contribution from a Q=m bond operator while a site-
symmetric perturbation does not.!”

The scaling dimensions of the different contributions are

8

A[szFa] =3 + e (18)
A[By, 1=3g. (19)

1 1
A[B ] = 5 + % (20)

In the spin Bose-metal phase we have g=1, so the 2kz, and
4kp; terms are always relevant 0+ 1D perturbations while the
/2 term is relevant if g>1/2. The relevant perturbations
grow and one scenario is that they eventually pin the fields at
the origin. Physically this leads to breaking the chain into
two decoupled semi-infinite systems, which we can then
study separately. The pinning conditions on the fields at the
defect can be guessed by considering the most relevant per-
turbation and minimizing the corresponding energy. We ex-
pect the By, and By, terms to be the dominant, which
would

Pin 0,,(x)), 6r,(xp), 6,_(x0). (21)

This is the case that we focus on. In Appendix B we will
consider pinning conditions preferred by the B, term,
which may be of interest in the borderline case g=1.

A comment is in order. On physical grounds, the symme-
try of the defect perturbation is important. For the case with
no site inversion symmetry like the impurity (1) in Fig. 1, we
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can envision a possible outcome of the RG growth of the
perturbation by considering a situation where the defect bond
is strong. The two spins will form a singlet, and if we inte-
grate it out, we get two semi-infinite chains weakly coupled
to each other, which under further renormalization group
(RG) will eventually flow to decoupled semi-infinite systems
with pinned values of the fields at the boundary. We can
envision more general situations where an even number of
spins will form a strongly coupled cluster with a singlet
ground state and upon integrating this out, we again have
two weakly coupled semi-infinite systems. Below, we will
consider a fixed point of a semi-infinite system and give
physical calculations of the bond textures and the oscillating
susceptibility near the boundary (impurity). Turning to the
case with impurities with site inversion symmetry such as
(2), (3), and (4) in Fig. 1, such reasoning would give us a
half-integer spin (formed by some effective strongly coupled
cluster with an odd number of sites) weakly coupled to two
semi-infinite systems. This would need to be analyzed fur-
ther, which we briefly discuss in Sec. II C.

B. Physical calculations of oscillating susceptibility and bond
textures in the fixed-point theory of semi-infinite chains

From now on, we set the location of the defect to be the
origin. We work with a semi-infinite system with specified
boundary conditions at the origin and calculate the bond-
energy texture

B =3 (By, () +(Ba, () +(Bon(). (22)

a=1,2

We also calculate the local spin susceptibility, which can be
measured in Knight-shift experiments. We will see that there
are contributions that oscillate as a function of distance from
the boundary x(x)=x""(x)+ x°*(x); in fact x°**(x) dominates
over y“"(x) and can produce strong inhomogeneous broad-
ening of the NMR lineshapes. The local spin susceptibility
x(i) at a lattice site { measured in a small uniform magnetic
field & is

X(i) = 5D

o = B(S5S50 (23)

h=0

tot
perature. Rewriting the spin operators in terms of bosonic

fields introduced above,

where S{,, =25’ is the total spin and S is the inverse tem-

Xosc(x)=B<S(z)sc(x)f dySlzlm(y) > (24)
0

where S5 =3 ,e?"S}, and we are interested in =2k, 2k,

0sc
9y 0u0(y

/2, and 7r; while S5,(y)=2 2, i ). Hence we define

Xo = ﬁ<e"QXSi>(x) f dySuni(y) + C~C->- 23)
0

We consider the pinning Eq. (21) driven by the relevant
local terms By, By, ; in order to minimize these energies
the natural pinning values of 6,,(0) and 6,,(0) are
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cos[\EHM(O)] =*1= \500,,(0) =integer X 7. (26)

The pinning value of the field 6,_ depends on the details such
as the amplitudes and phases y in Egs. (8)-(10). As dis-
cussed in Appendix A, the pinning of a # at the origin im-
plie(s )stronger fluctuation of the dual field ¢ and consequently
(e™y=0.

Bond energy texture is given by Eq. (22). The (B, (x))
term vanishes and the other contributions can be easily de-
rived by applying the formulas in Appendix A

A2kFa COS(sza.x + 52kFa)

<B2kF"(x)>z [Uaﬁ ) <2WX):|1/2[UB ) (27Tx):|g/4’
sinh| — —sinh| —
T v.B T vpB

(27)

A4kF1 COS(4kF1.X + 54kF1)

(B, (X)) = lvﬂ' (27”)]8 ,
—sinh| —
T vB

where a=1,2, A, are some amplitudes, and 5Q are phases
that depend on the pinned 6 values at the origin and are
ultimately determined by the details of the defect. At low
temperature 7— 0, we have the following behavior as a
function of the distance x from the open boundary (defect):

(28)

COS(ZkFax + 52kFa)

<BZkFa(x)> -~ x(1/2+g/4) P (29)
COS(4kF].x + 54]( )
<B41<F1(x)> S E— £ (30)
X

Thus, at low temperature the bond-energy texture around the
impurity reveals the correlations present in the system, and
the physics can be viewed as a nucleation of the dominant
“bond orders” near the defect. If we can tune the Luttinger
parameter g, we see that there are two regimes; for 2/3<g
<1 the 2k, terms dominate while for g<<2/3 the 4kp
dominates.

Turning to the oscillating susceptibility, the x5, term van-
ishes and only the x;° and x7° contribute to the final result.
Applying the formulas from Appendix A gives
Cor,, - X - €O8(2kp,x + békpa)

0SC

Xk, = vB 2ax\ || vB 2mx ) ¢4
sinh| — —sinh| —
T e T vB

(1)
osc __ Cﬂ"x'(_ 1)x
T {01,8 (277)6)1”2{1)2,8. (27Tx>11/2
—sinh| — —sinh{ —
T Ulﬂ m %)
(32)

where a=1,2, C, are some constant amplitudes, and 5’Q
some phases absorbing all pinned field values and eventually
determined by the details of the defect. At low temperatures
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T— 0, the oscillating susceptibilities at 2kf, and 7 become

Xoi, () ~ X278 cos(2kpx + 8,)s (33)

X0 ~ x0(=1)". (34)

The envelope function in the first line satisfies x(1/>~&/%
=x""#, which comes from the condition g < 1. Therefore, at
low temperatures the oscillating susceptibility at 2k, actu-
ally increases with the distance from the open end. On the
other hand, the oscillating susceptibility at 7r reaches a con-
stant amplitude.

To conclude the discussion of the semi-infinite system
with the boundary conditions Eq. (21), we note that this fixed
point is stable [e.g., the scaling dimension of B,,(0) be-
comes 1/2+1/(2g)>1, so it is irrelevant]. The boundary
spin operator has scaling dimension 1, e.g., Si na ~ (01
+ 6,,,) at the boundary. Knowing the fixed-point theory of the
semi-infinite chain, we can briefly discuss other situations
with impurities.!”-?>-2* (For a recent review of impurity prob-
lems, see Ref. 25.)

C. Other situations with impurities
1. Weakly coupled semi-infinite systems

In this case, we imagine two semi-infinite chains coupled
to each other at the origin. Since in each semi-infinite system
the scaling dimension of the boundary spin operator is 1, the
spin-spin coupling between the two systems is irrelevant and
they will decouple at low energies. This is the reason why a
nonmagnetic impurity such as (1) in Fig. 1 breaks the system
into two halves at low energies and the physical calculations
in Sec. II B apply generically.

2. Spin-% impurity coupled to a semi-infinite system

In this case, the spin-1/2 impurity is coupled to the bound-
ary spin operator which contains contributions from both
“lo” and ‘“20” channels, 6H =)\§imp-(§b0und”1+§bound”2)
—>7\1§imp'§bound.,1 +)\2§imp~§bound”2. (The “p—" sector does
not enter in the important terms.) The couplings A, and \,
are both marginal. If they are marginally irrelevant, the im-
purity spin will decouple. If one of the couplings is margin-
ally relevant while the other is marginally irrelevant, the rel-
evant coupling will grow and the impurity spin will be
absorbed into the corresponding channel. Finally, if both of
the couplings are relevant, since the two channels are not
equivalent, one coupling will grow faster; a likely scenario is
that the impurity spin will be absorbed into the dominating
channel and eventually the two channels will decouple.

3. Two semi-infinite systems coupled symmetrically to a spin-%
impurity

Now let us take two semi-infinite chains and couple them
together through a spin-1/2 impurity symmetrically. This
case is also relevant for the site-symmetric nonmagnetic im-
purities like impurity (2), (3), and (4) in Fig. 1: the reason is
that because of the site inversion symmetry, the nonmagnetic
impurity affects an even number of bonds which couple an
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odd number of spins; then we can imagine a strongly
coupled cluster with the odd number of spins which will
effectively behave as a half-integer spin weakly coupled to
the left and right semi-infinite systems.

The situation is more complex than in the previous sub-
section because we now have symmetry between the two
semi-infinite systems, reminiscent of the two-channel Kondo
problem. We can imagine the following possibilities. When
all couplings are marginally irrelevant, the impurity spin and
the two semi-infinite systems will decouple at low energies
(and the physical calculations of textures in Sec. II B are
valid in this case). Suppose now we have marginally relevant
couplings and the dominant growth is for the channels 1o in
the two semi-infinite systems. One is tempted to speculate
about the possibility of “healing” the channels 1o across the
impurity while the channels 20 remain open. However, it is
likely that this is not a stable fixed point in the presence of
the allowed terms in the Hamiltonian coming from the mi-
croscopic ladder system. While the eventual outcome is not
clear and depends on details, on physical grounds we again
expect arriving at some stage at a fixed point with some odd
number of spins forming a half-integer spin that is decoupled
from two semi-infinite systems.

III. CONCLUSIONS

To summarize, following the theoretical description® of
the spin Bose-metal phase in the triangular strip spin-1/2
model with ring exchanges, we discussed the effects due to
different types of impurities. The defects can have additional
bond or site symmetry in the 1D zigzag chain language. We
first treated the defects as local perturbations in the Hamil-
tonian and saw that all types produce relevant perturbations,
eventually breaking the system into two halves and a sepa-
rate decoupled cluster of spins. In the bond-symmetric case
(or more general cases with no symmetries) the decoupled
cluster is likely to be nonmagnetic while in the site-
symmetric case it has half-integer spin and the details of such
fixed points depend on the microscopic details.!”-?»?* This
analysis also motivated appropriate boundary conditions for
pinning the fields in the fixed-point theory for the semi-
infinite systems.

For such a semi-infinite chain, we calculated the bond-
energy texture near the boundary and found power-law de-
cays Egs. (27) and (28) of the oscillating components at
wave vectors 2kp,, 4kyp;. The dominant power law switches
from the 2kg, to the 4kr; when the Luttinger parameter g
drops below 2/3. We suggest that characterizing such bond
textures in numerical studies, e.g., density matrix renormal-
ization group (DMRG),? could be useful for determining the
Luttinger parameter g of the SBM theory.

We also calculated the oscillating susceptibilities at 2kg,
and 7, Egs. (31) and (32), which behave differently at low
temperatures. The susceptibilities at 2k, actually increase
with the distance from the boundary in the limit of zero
temperature (and zero field), while the susceptibility at
becomes distance independent. Transfer-matrix density-
matrix renormalization group (TMRG) (Refs. 22, 23, and 26)
technique can measure local susceptibility at finite tempera-
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ture and can be useful for exploring the susceptibility near
defects in numerical studies. The rate of increase at 2k, is
slower than in the 1D chain'® but would still produce strong
NMR line broadening at low temperatures. Of course, this is
the result for the long-distance behavior along the 1D direc-
tion. If we are thinking about the 2D spin liquid, we would
likely expect a power-law decay away from an impurity.'3-13
Nevertheless, the persistence of the oscillating susceptibili-
ties on the quasi-1D ladders suggests that in the 2D case the
decay may be slow and also produce significant inhomoge-
neous line broadening. Finally, in this paper we focused on
nonmagnetic impurities and the simplest “fixed-point” model
with open boundary. We have not touched interesting and
experimentally relevant crossovers present for a magnetic
impurity weakly coupled to the system.?>?3 Here again the-
oretical and numerical studies similar to Ref. 22 and 23
could be very helpful, for example, in estimating the size of
the Kondo screening cloud which is an additional and poten-
tially large effect near the magnetic impurity.
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APPENDIX A: ONE MODE THEORY ON A SEMI-
INFINITE CHAIN

For the simplest case,'-!823%7 consider a one mode theory

on a semi-infinite chain with pinned value at the origin,
6(0, 7)=pinned= 6. The action is

N | 1
S= f dxf dr—[v(axﬁ)z + —(a,e)z} . (AD)
0 0 2mg v
The correlation functions needed in this paper are
) A iuby
(/07 = - e (A2)
{uﬁ , (2m)]“ g4
—sinh{ —
T vB
eiuﬁ(x,f)f dy ay 0()7’ T ) _ iugx<eiu0(x,f)> (A3)
0 ™ Bv
__lugx Ae%
Bv {U,B . (27Tx>]”2g/4’
—sinh| ——
T vB
(Ad)
(eMelx 7y = 0, (AS)

Here u is a parameter depending on which quantity is being
measured and A is some real constant. The (¢™%) is nonzero
because of the pinning at x=0 and decays as a power law
away from the origin at 7=0. On the other hand, the conju-
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gate field ¢ fluctuates more strongly than in the bulk and
(e™¢)=0 everywhere.

We can similarly consider a one mode theory with the
dual field pinned at the origin, ¢(0, 7)=pinned= ¢,. It is con-
venient to work with the action

o ﬁ’ g 1
S= f dxf a'r-[v(&xqo)2 + —(6T¢)2] . (A6)
0 0 27T U

The correlation function needed is

| Feso
(eMe7) = - o (A7)
|:UB . (217)6)]” g
—sinh| —
T vB

where A is some constant.

APPENDIX B: CALCULATIONS IN A FIXED-POINT
THEORY OF A SEMI-INFINITE SYSTEM WITH PINNED

05.(0), ¢5_(0), AND ¢, _(0)

Here we consider the theory [Eq. (1) on a semi-infinite
chain with boundary conditions

Pin 0,.(0). @,(0). @, (0).

This can arise if we minimize the B,,(0) perturbation in-
stead of the BZkFa(O) and B4kﬂ(0), see Egs. (8)-(10). Coming
from the microscopic ladder spin system in the SBM phase
with g <1, this fixed point is unstable to the allowed By, (0)
terms. Nevertheless, it can be of interest in the special case
with g=1, which is realized, e.g., by the Gutzwiller wave
functions or at phase transitions out of the SBM.? The cal-
culations of the physical textures are simple and we summa-
rize these below.

Because of the pinning Eq. (B1), the dual fields ¢,., 6,._,
and 6,_ fluctuate more strongly. The only nonvanishing term

P
in the bond energy texture is

(B(x)) = (B (x)).

If v;=v,, then “o+” and “o—" variables decouple and we can
apply the formulas in Appendix A. In the general case v,

(B1)

(B2)
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#U,, the calculations are more demanding but the result is
simple

T
ALn cos(zx + 6,,/2)

(Bapn(x)) = {v,ﬁ . (27”)}1/2[0[; . (zﬂx)]1/4g’
sinh| — —sinh{ —
T v, T vB

(B3)

where U%:%(Ulﬁv%), A, is some amplitude and &, is a
constant phase. The pinned values at the origin as well as the
Klein numbers enter in the same way as they enter the as-
sumed minimization of B_,(0), Eq. (10), so the final result

depends only on the physical details of this term at the ori-

gin. In the limit 7— 0,
cos| —x+
2 /2

1/2+1/4g) (B4)

(B () ~ —
X

As for the “oscillating susceptibility,” similarly to the bond
energy texture, only the Q=/2 term contributes to the final
result. Again, for v;=v, we can apply the formulas in Ap-
pendix A, while in the general case we get

T /
C-x- cos(gx + 57,/2)

X2 = [Urﬁ . (27x>]l/2lvﬂ . (27”)11/45"
sinh| — —sinh| —
T v, ™ vB

(B5)

where C,, is some amplitude and &, is a constant phase
absorbing all pinned values and eventually determined by the
details of the defining energy B»(0). In the low-temperature
limit 7—0,

) n
X?:/% . x(1/2—1/4g) COS<5X+ 5;_/2> . (B6)
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